Accretion of moon(s) around Earth-like planets

Lauren Fujishima

Northwestern University

Seth Jacobson

Michigan State University

Gabriel Nathan

Michigan State University

Moon formation from giant impacts via circumplanetary disks is a universal process

- 1. Growing protoplanets collide in giant impacts
 - Robust outcome of terrestrial planet formation simulations (e.g. Chambers 2000)
- 2. Giant impacts make circumplanetary disks
 - Verified outcome from SPH simulations (e.g. Canup & Asphaug 2001)
- 3. Circumplanetary disks make moons
 - Earth's moon (e.g. Ida et al. 1997)
 - Mars' Phobos and Deimos (e.g. Canup & Salmon 2018)

Ida et al. 1997

Numerical simulations of moon formation from a circumplanetary disk

Model Components

- Inner viscously evolving, fluid-like
 First-order Lindblad resonances disk
 Tidal dissipation
- Outer moonetesimal n-body disk
- Mass transfer between inner and outer disks
- Both bouncing and accretional moonetesimal collisions

Canup & Salmon 2019

What about moon formation from circumplanetary disks are we studying?

In what ways do the above parameters affect the resulting system?

- Which conditions yield our Earth-moon system?
- Which conditions yield two-moon systems?

Preliminary Results: General Findings

Larger b_{outer} values lead to larger semi-major axes in resulting moon(s) Final mass and semimajor axis of the most massive moon directly vary with initial specific angular momentum Ida et al. 1997)

Preliminary Results: General Findings

sporadically at first, then smoothly, sometimes with two distinct growth phases Larger semi-major axes appear more frequently when there are fewer final moonetesimals

Preliminary Results: Two-Moon Systems

Summary

- Results were like those of J. Salmon and R. M. Canup
- A circumplanetary disk with an outer bound of at least 6 a_R from Earth's center is more likely to produce multi-moon systems, most of which are stable
- Systems with fewer final moons tended to have larger semi-major axes
- Results suggest two mass growth phases: perhaps collision-driven and inner-disk driven

Going Forward

- What mass growth patterns do the final moons follow given different parameter values?
- When do much smaller circumplanetary disks form moon(s)?

